Previous topic

numpy.logical_and

Next topic

numpy.logical_not

numpy.logical_or

numpy.logical_or(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'logical_or'>

Compute the truth value of x1 OR x2 element-wise.

Parameters:
x1, x2 : array_like

Logical OR is applied to the elements of x1 and x2. If x1.shape != x2.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.

**kwargs

For other keyword-only arguments, see the ufunc docs.

Returns:
y : ndarray or bool

Boolean result of the logical OR operation applied to the elements of x1 and x2; the shape is determined by broadcasting. This is a scalar if both x1 and x2 are scalars.

Examples

>>> np.logical_or(True, False)
True
>>> np.logical_or([True, False], [False, False])
array([ True, False])
>>> x = np.arange(5)
>>> np.logical_or(x < 1, x > 3)
array([ True, False, False, False,  True])